3.271 \(\int \frac{x^5}{\sqrt{c+d x^3} (4 c+d x^3)} \, dx\)

Optimal. Leaf size=59 \[ \frac{2 \sqrt{c+d x^3}}{3 d^2}-\frac{8 \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{3} \sqrt{c}}\right )}{3 \sqrt{3} d^2} \]

[Out]

(2*Sqrt[c + d*x^3])/(3*d^2) - (8*Sqrt[c]*ArcTan[Sqrt[c + d*x^3]/(Sqrt[3]*Sqrt[c])])/(3*Sqrt[3]*d^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0477036, antiderivative size = 59, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {446, 80, 63, 203} \[ \frac{2 \sqrt{c+d x^3}}{3 d^2}-\frac{8 \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{3} \sqrt{c}}\right )}{3 \sqrt{3} d^2} \]

Antiderivative was successfully verified.

[In]

Int[x^5/(Sqrt[c + d*x^3]*(4*c + d*x^3)),x]

[Out]

(2*Sqrt[c + d*x^3])/(3*d^2) - (8*Sqrt[c]*ArcTan[Sqrt[c + d*x^3]/(Sqrt[3]*Sqrt[c])])/(3*Sqrt[3]*d^2)

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^5}{\sqrt{c+d x^3} \left (4 c+d x^3\right )} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{x}{\sqrt{c+d x} (4 c+d x)} \, dx,x,x^3\right )\\ &=\frac{2 \sqrt{c+d x^3}}{3 d^2}-\frac{(4 c) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c+d x} (4 c+d x)} \, dx,x,x^3\right )}{3 d}\\ &=\frac{2 \sqrt{c+d x^3}}{3 d^2}-\frac{(8 c) \operatorname{Subst}\left (\int \frac{1}{3 c+x^2} \, dx,x,\sqrt{c+d x^3}\right )}{3 d^2}\\ &=\frac{2 \sqrt{c+d x^3}}{3 d^2}-\frac{8 \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{3} \sqrt{c}}\right )}{3 \sqrt{3} d^2}\\ \end{align*}

Mathematica [A]  time = 0.0199415, size = 56, normalized size = 0.95 \[ \frac{6 \sqrt{c+d x^3}-8 \sqrt{3} \sqrt{c} \tan ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{3} \sqrt{c}}\right )}{9 d^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^5/(Sqrt[c + d*x^3]*(4*c + d*x^3)),x]

[Out]

(6*Sqrt[c + d*x^3] - 8*Sqrt[3]*Sqrt[c]*ArcTan[Sqrt[c + d*x^3]/(Sqrt[3]*Sqrt[c])])/(9*d^2)

________________________________________________________________________________________

Maple [C]  time = 0.011, size = 425, normalized size = 7.2 \begin{align*}{\frac{2}{3\,{d}^{2}}\sqrt{d{x}^{3}+c}}+{\frac{{\frac{4\,i}{9}}\sqrt{2}}{{d}^{4}}\sum _{{\it \_alpha}={\it RootOf} \left ({{\it \_Z}}^{3}d+4\,c \right ) }{\sqrt [3]{-{d}^{2}c}\sqrt{{{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( -i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}\sqrt{{d \left ( x-{\frac{1}{d}\sqrt [3]{-{d}^{2}c}} \right ) \left ( -3\,\sqrt [3]{-{d}^{2}c}+i\sqrt{3}\sqrt [3]{-{d}^{2}c} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}} \left ( i\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,\sqrt{3}d-i\sqrt{3} \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}+2\,{{\it \_alpha}}^{2}{d}^{2}-\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,d- \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}d \left ( x+{\frac{1}{2\,d}\sqrt [3]{-{d}^{2}c}}-{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}},{\frac{1}{6\,cd} \left ( 2\,i\sqrt [3]{-{d}^{2}c}\sqrt{3}{{\it \_alpha}}^{2}d-i \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}\sqrt{3}{\it \_alpha}+i\sqrt{3}cd-3\, \left ( -{d}^{2}c \right ) ^{2/3}{\it \_alpha}-3\,cd \right ) },\sqrt{{\frac{i\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c} \left ( -{\frac{3}{2\,d}\sqrt [3]{-{d}^{2}c}}+{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{d{x}^{3}+c}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(d*x^3+4*c)/(d*x^3+c)^(1/2),x)

[Out]

2/3*(d*x^3+c)^(1/2)/d^2+4/9*I/d^4*2^(1/2)*sum((-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^
2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/
2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^
2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*El
lipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2
),1/6/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*
_alpha-3*c*d)/c,(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_al
pha=RootOf(_Z^3*d+4*c))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(d*x^3+4*c)/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.57338, size = 294, normalized size = 4.98 \begin{align*} \left [\frac{2 \,{\left (2 \, \sqrt{3} \sqrt{-c} \log \left (\frac{d x^{3} - 2 \, \sqrt{3} \sqrt{d x^{3} + c} \sqrt{-c} - 2 \, c}{d x^{3} + 4 \, c}\right ) + 3 \, \sqrt{d x^{3} + c}\right )}}{9 \, d^{2}}, -\frac{2 \,{\left (4 \, \sqrt{3} \sqrt{c} \arctan \left (\frac{\sqrt{3} \sqrt{d x^{3} + c}}{3 \, \sqrt{c}}\right ) - 3 \, \sqrt{d x^{3} + c}\right )}}{9 \, d^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(d*x^3+4*c)/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

[2/9*(2*sqrt(3)*sqrt(-c)*log((d*x^3 - 2*sqrt(3)*sqrt(d*x^3 + c)*sqrt(-c) - 2*c)/(d*x^3 + 4*c)) + 3*sqrt(d*x^3
+ c))/d^2, -2/9*(4*sqrt(3)*sqrt(c)*arctan(1/3*sqrt(3)*sqrt(d*x^3 + c)/sqrt(c)) - 3*sqrt(d*x^3 + c))/d^2]

________________________________________________________________________________________

Sympy [A]  time = 16.4857, size = 65, normalized size = 1.1 \begin{align*} \begin{cases} \frac{2 \left (- \frac{4 \sqrt{3} \sqrt{c} \operatorname{atan}{\left (\frac{\sqrt{3} \sqrt{c + d x^{3}}}{3 \sqrt{c}} \right )}}{9 d} + \frac{\sqrt{c + d x^{3}}}{3 d}\right )}{d} & \text{for}\: d \neq 0 \\\frac{x^{6}}{24 c^{\frac{3}{2}}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/(d*x**3+4*c)/(d*x**3+c)**(1/2),x)

[Out]

Piecewise((2*(-4*sqrt(3)*sqrt(c)*atan(sqrt(3)*sqrt(c + d*x**3)/(3*sqrt(c)))/(9*d) + sqrt(c + d*x**3)/(3*d))/d,
 Ne(d, 0)), (x**6/(24*c**(3/2)), True))

________________________________________________________________________________________

Giac [A]  time = 1.13233, size = 66, normalized size = 1.12 \begin{align*} -\frac{2 \,{\left (\frac{4 \, \sqrt{3} \sqrt{c} \arctan \left (\frac{\sqrt{3} \sqrt{d x^{3} + c}}{3 \, \sqrt{c}}\right )}{d} - \frac{3 \, \sqrt{d x^{3} + c}}{d}\right )}}{9 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(d*x^3+4*c)/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

-2/9*(4*sqrt(3)*sqrt(c)*arctan(1/3*sqrt(3)*sqrt(d*x^3 + c)/sqrt(c))/d - 3*sqrt(d*x^3 + c)/d)/d